Biography
Chih-Kuang Wang has completed his PhD from National Cheng Kung University and Post-doctoral studies from Industrial Technology Research Institute (ITRI) in Taiwan. He is a staff member of the Department of Medicinal and Applied Chemistry and also the investigator working in the Orthopaedic Research Center (ORC) at Kaohsiung Medical University (KMU). He has published more than 40 papers in reputed journals, 5 kinds patent have been acquired, and 3 kinds patent application are in process.
Abstract
The key advantages of a 3D printed biodegradable scaffolds are custom control of shape, porosity, pore connectivity, material composition, site-specific drug/growth factor delivery, and orientation. Another limitation in 3D printed parts is that the mechanical properties of printed objects do not always resemble the repaired tissue in terms of modulus, and strength. Improvement in mechanical strength often resulted in compromise in biodegradability or biocompatibility. Clinical reported that porous biphasic bioceramics of hydroxyapatite/ï¢-tricalcium phosphate (Hap/ï¢-TCP) can promote osteoconduction during new bone formation in in vivo experiments. However, the brittle nature of porous bioceramic substitutes cannot match the toughness of bone, which limits the use of these materials for clinical load-bearing applications. Fortunately, our novel methods to enhance mechanical properties are mainly based on the admixture of a combustible reverse negative thermo-responsive hydrogel (poly(N-isopropylacrylamide base) that burns away during sintering in the resulting object. This method can be regarded as functioning in a manner similar to the cold isostatic press (CIP) step before the powder sintering densification process. In other words, sintering densification is expected via free volume contraction, which will increase the mechanical properties after the formation of the porous bioceramics. We will develop the curved shape bioceramic block with interpenetrating channels for bone reconstruction. The study aimed to investigate the processing chain, the dimensional accuracy and the mechanical and physical characteristics of the implants.
Biography
Vasily Tarnopolskiy has completed his PhD in 2003 from Russian Academy of Sciences and Post-doctoral studies from Samsung SDI (S. Korea), Muenster University (Germany) and CEA (France). His interests include lithium-ion batteries, high-voltage cathodes, solid electrolytes, all-solid Li cells.
Abstract
Today battery safety is one of the main problems blocking the market of electric vehicles. Toxic and flammable liquid electrolytes are responsible for most of the safety incidents including electrolyte leakage, ignition and cell explosion. It is critical to address such safety concerns when scaling up the battery size for use in electric transport and stationary applications. Solid lithium-ion conductors have granted much attention as candidates to replace liquid electrolytes in Li-ion batteries due to the following possible advantages: non-flammability, non-reactivity, higher thermal stability, absence of leakage, large electrochemical window, ease of miniaturization and excellent storage stability. However, solid-state Li-ion batteries have their issues: low ionic conductivity, difficult implementation and volume changes are some of the reported limitations. CEA LITEN has a broad experience in development of conventional Li-ion cells with liquid electrolyte. The studies of solid electrolyte implementation have been initiated to meet the demands of car-makers. Nowadays, a number of techniques have been reported in literature to incorporate solid electrolyte into the Li cell but still there is no commercial product. The main problems are the interfacial resistance due to poor contact between particles, chemical and electrochemical interactions between components of the cell. Our lab develops ceramic and glassy solid electrolytes to improve the battery safety and employ advanced electrode active materials. One of the amitious targets is to adapt the approaches from the world of ceramics to create a «one stone» dense Li-ion cell. In this study, two aspects of solid electrolyte implementation will be discussed: one relates to conductive membrane stabilization; another deals with composite electrodes. Ceramic Li7La3Zr2O12 having a garnet structure and softer Li10SnP2S12 are used as a solid electrolytes. These electrolytes have different physical properties which allows using different implementation methods.