Call for Abstract

2nd International Conference and Expo on Ceramics and Composite Materials, will be organized around the theme “Advances in Ceramics and Composite Materials”

Ceramics 2016 is comprised of 19 tracks and 73 sessions designed to offer comprehensive sessions that address current issues in Ceramics 2016.

Submit your abstract to any of the mentioned tracks. All related abstracts are accepted.

Register now for the conference by choosing an appropriate package suitable to you.

The purpose of ceramics processing to an applied science is the natural result of an increasing ability to refine, develop, and characterize ceramic materials. This track covers Phase equilibria in ceramic systems, Mechanical behavior and failure mechanisms, Sintering and Microstructure Development, Sol-gel techniques and thin film deposition.

  • Track 1-1Advanced Ceramics
  • Track 1-2Composite Ceramics
  • Track 1-3Polymer Ceramics
  • Track 1-4Ceramics Processing
  • Track 1-5Properties of Ceramics

Ceramic-like inorganic polymers can be made under low energy conditions such as ambient temperatures and pressures. These materials include aluminosilicates or “Geopolymers”, phosphates and other chemically bonded inorganic compounds. This track covers Synthesis, Processing and Microstructure, Porosity, Novel Applications and Construction Materials, Construction Materials.

  • Track 2-1Ceramic Materials
  • Track 2-2Composite Materials
  • Track 2-3Biomaterials
  • Track 2-4Polymer Materials
  • Track 2-5Construction Materials

Long-term mechanical reliability is a key issue in their ultimate use for a specific application. Correlations between processing and service conditions/environment to failure of ceramics by fracture, fatigue or deformation are key aspects of materials applications. This track covers Mechanics, Characterization Techniques, and Equipment, Tribology and Wear, Environmental Effects, Reliability and Small Scale Testing, Mechanical Behavior of CMCs, Processing - Microstructure - Mechanical Properties Correlation.

  • Track 3-1Characterization Techniques
  • Track 3-2Tribology and Wear
  • Track 3-3Environmental Effects
  • Track 3-4Reliability and Small Scale Testing
  • Track 3-5Mechanical Behavior of CMCs
  • Track 3-6Processing - Microstructure - Mechanical Properties Correlation

A composite material is made by combining two or more materials – often ones that have very different properties. The two materials work together to give the composite unique properties. This track covers Imaging of micro-defects, Adhesive layer effects, toughening of novel composites, Ceramic, Metallic and polymer matrix composites, Organic/inorganic hybrids.

  • Track 4-1Advanced composite materials
  • Track 4-2Smart composite materials
  • Track 4-3Polymer Matrix Composites
  • Track 4-4Novel Composites

This track covers recent advances in coating sciences and technologies, processing, microstructure and property characterization, and life prediction. This track covers Advanced Thermal Barrier Coatings: Processing and Development, Multifunctional, Corrosion and Wear, Environmental Barrier Coatings, Thermal Barrier Coatings: Characterization and NDE Methods, Advanced Multifunctional Coatings.

  • Track 5-1Environmental Coatings
  • Track 5-2Multifunctional Coatings
  • Track 5-3Industrial Coatings
  • Track 5-4Applications of Coatings
  • Track 5-5Thermal Coatings

The technologies aiming for clean energy generation with zero-emission will require advances in materials developments for electricity generation as well as efficient and reliable energy storage. This track covers Solid Electrolytes and Characterization, Energy Harvesting and Storage.

 

  • Track 6-1Solid Electrolytes and Characterization
  • Track 6-2Energy Harvesting and Storage
  • Track 6-3Energy Generation, Conversion
  • Track 6-4Rechargeable Energy Storage

“Production Root Technology” symbolically refers to an integration of six production technology groups; casting, molding, forming, welding, heat treatment, and surface treatment. This track covers New Concept & Emerging Technology, Shaping & Thermal Process, and Coating Process for Low Friction and Energy Solution, Innovative Process Technologies with Enhanced Performances of Products.

  • Track 7-1New Concept & Emerging Technology
  • Track 7-2Shaping & Thermal Process
  • Track 7-3Coating Process for Low Friction and Energy Solution
  • Track 7-4Innovative Process Technologies with Enhanced Performances of Products
  • Track 7-5Production Root Technology

Metal oxides represent an assorted and appealing class of materials whereby the field of metal oxide nanostructured morphologies has become one of the most active research areas within the nano-science community. This track covers Highly porous ceramic and metal materials, Composites based on shape-memory alloys, Design and manufacturing technology for ceramic and cermet composites with structural and phase transformations, Transformation-hardening ceramic and metal composite materials, Wear resistance of transformation-hardening ceramic and metal composite materials, Bioceramic Materials, Porcelain, Ceramics Manufacturers and Market Analysis.

  • Track 8-1Highly Porous Ceramic and Metal Materials
  • Track 8-2Composites Based on Shape-Memory Alloys
  • Track 8-3Design and Manufacturing Technology for Ceramic and Cermet Composites With Structural and Phase Transformations
  • Track 8-4Transformation-Hardening Ceramic and Metal Composite Materials
  • Track 8-5Wear Resistance of Transformation-Hardening Ceramic and Metal Composite Materials
  • Track 8-6Bioceramic Materials
  • Track 8-7Porcelain
  • Track 8-8Ceramics Manufacturers and Market Analysis

This track aims at bringing together engineers, technologists and scientists in the area of ceramic, carbon, glass and glass-ceramic materials containing high volume fractions of porosity, with porosity ranging from nano- to milli-meters. This track covers Innovations in Processing Methods and Synthesis of Porous Ceramics, Modeling and Properties of Porous Ceramics, Applications of Porous Ceramics, Mechanical Properties of Porous Ceramics.

  • Track 9-1Innovations in Processing Methods and Synthesis of Porous Ceramics
  • Track 9-2Modeling and Properties of Porous Ceramics
  • Track 9-3Applications of Porous Ceramics
  • Track 9-4Mechanical Properties of Porous Ceramics

When properly combined with other materials, ceramic and glass materials can exhibit ballistic penetration resistances significantly higher than conventional monolithic armor materials. This track covers Materials Characterization, Modeling / Testing and Evaluation / Quasi-Static and Dynamic Behavior.

  • Track 10-1Materials Characterization
  • Track 10-2Modeling / Testing and Evaluation / Quasi-Static and Dynamic Behavior

The influence of electrical fields on various phenomena in ceramic science is an emerging area which deals with the ceramic materials at higher temperatures and also the sintering characteristics shown by materials. This track covers Flash Sintering Phenomena and Mechanisms, Field Assisted Sintering Phenomena.

  • Track 11-1Flash Sintering Phenomena and Mechanisms
  • Track 11-2Field Assisted Sintering Phenomena at High Temperatures

The session will cover all aspects, from basic research and material characterization, through physicochemical aspects of growth and deposition techniques, to the technological development of industrialized materials. This track covers Semiconductors, Ferro/piezo-electric, Optical Materials, and Scintillator.

  • Track 12-1Semiconductors
  • Track 12-2Ferro/piezo-electric
  • Track 12-3Optical Materials
  • Track 12-4Scintillator
  • Track 12-5Electrical, Optical and Medical Applications

The thermal stability, wear-resistance and resistance to corrosion of ceramic components make the application of ceramic the ideal choice for many industrial uses. This track covers Medical Technology, Automotive Industry, Environment Technology, Mechanical and Metal Industry, Chemical Process Engineering, Engineering Service Providers, Electronics, Sensors and Semi-Conductor Industry, Others (armour, optics, wear, protection and corrosion).

  • Track 13-1Medical Technology
  • Track 13-2Automotive Industry
  • Track 13-3Environment Technology
  • Track 13-4Mechanical and Metal Industry
  • Track 13-5Chemical Process Engineering
  • Track 13-6Engineering Service Providers
  • Track 13-7Electronics, Sensors and Semi-Conductor Industry
  • Track 13-8Others (Armour, Optics, Wear, Protection and Corrosion)

Range in biocompatibility from the ceramic oxides, which are inert in the body, to the other extreme of resorbable materials, which are eventually replaced by the materials which they were used to repairing, used in many types of medical procedures. This track covers Biological Evaluation of Bioceramic Materials, Applications, Case Studies, and Bioceramics for Cancer Therapy, Bioceramics for Dental Application, and Bioceramics in Tissue Engineering.

  • Track 14-1Biological Evaluation of Bioceramic Materials
  • Track 14-2Applications
  • Track 14-3Case Studies
  • Track 14-4Bioceramics for Cancer Therapy
  • Track 14-5Bioceramics for Dental Application
  • Track 14-6Bioceramics in Tissue Engineering
  • Track 14-7Bioceramic and Bioglass Materials
  • Track 14-8Advanced Ceramics in Medical Devices
  • Track 15-1Strong and Flexible Ceramic Composites
  • Track 15-2High Temperature Advanced Ceramics