Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Ceren Peksen

Ceren Peksen

Ondokuz Mayis University, Turkiye

Title: In Vivo behaviour of Ag+ ion doped calcium phosphate based ceramic powder coating on Ti6Al4V implants

Biography

Biography: Ceren Peksen

Abstract

Long-term survival and favorable outcome of orthopaedic implant use are determined by bone-implant osseointegration and absence of infection near the implants. To enhance resistance to colonization, implant materials may be modified with antimicrobial coatings. The mechanism of the antimicrobial action of silver ions is closely related to their interaction with thiol groups.  In this study, Ag+ ion doped calcium phosphate based ceramic nanopowder coated Ti6AlV implants were evaluated to prevent implant-related infection by comparing hydroxyapatite (HA) coated and uncoated titanium implants in vivo. Ag+ ion doped calcium phosphate based nano-powder were deposited on Ti6Al4V implants by using elestrospray deposition technique. Electrospray coated samples were sintered under high vacuum by RF (radio frequency). After sintering process surface morphologies of implants were observed with scanning electron microscope. Prior to surgery, rabbits were randomised to receive either coated implants or uncoated implants. First group of the implants were coated with Ag+ ion doped nano size calcium phosphate based ceramic powder. Second group of the implants were coated with hydroxyapatite(HA), and the remaining implants (Group 3) were used without any coating. Implants were inserted left femurs of animals from knee regions with retrograde fashion. Before implantation of implants 50 µl solution containing 106 CFU/ml methicillin reistance Staphylococcus aureus (MRSA) injected intramedullary canal. Rabbits were monitored for 10 weeks. At the end of the 10 weeks animals were sacrificed and rods were extracted in a sterile fashion. Swab cultures were taken from intramedullary canal. Bacteria on titanium rods were counted. Histopathological evaluation of bone surrounding implants was also performed. In conclusion, Ag+ ion doped calcium phosphate based ceramic nano powder coated Ti6Al4V implants may prevents bacterial colonisation and infection compared with those for implants without coating and HA coated implants.